Don't Hate Math: Persamaan Linear dua Variabel

Latest courses

3-tag:Courses-65px
Tampilkan postingan dengan label Persamaan Linear dua Variabel. Tampilkan semua postingan
Tampilkan postingan dengan label Persamaan Linear dua Variabel. Tampilkan semua postingan

Selasa, 29 September 2020

Persamaan Linear Dua Variabel

 Bismilllahirahmanirahim

Assalamualaikum wr. wb

Bagaimana kabarnya hari ini.???

dimasa seperti ini selalu jaga kondisi yah, Apalagi dimasa Pandemi seperti ini.

kita akan membahas Persamaan Linear dua variabel.

Persamaan Linear Dua Variabel (SPLDV)

    Merupakan suatu persamaan linear yang memuat dua variabel, bentuk umum dari persamaan Linear dua variabel yaitu.

ax + by = c

Sistem Persamaan Linear Dua Variabel (SPLDV)

    Sistem memiliki makna kumpulan, kelompok sehingga Sistem persamaan linear dua variabel merupakan kumpulan dari beberapa persamaan linear dua variabel.  mempunyai bentuk umum sebagai berikut.
Dimana a, b, dan c merupakan konstanta

SPLDV Homogen
    jika nilai c1 = 0 dan c2 = 0 , Maka sistem persamaan tersebut dinyatakan sebagai Sistem pesamaan linear dua variabel yang homogen dan mempunyai bentuk.

bentuk-bentuk SPLDV homogen dapat kita jumpai sebagai berikut
1).  2x + 3y = 0
2). 2x - y = 0

atau 
1).  3x - 2y = 0
2). 5x - 2y = 0

SPLDV Tak Homogen
    jika nilai c1 ≠ 0 dan c2 ≠  0 , Maka sistem persamaan tersebut dinyatakan sebagai Sistem pesamaan linear dua variabel yang tak homogen dan mempunyai bentuk.
bentuk-bentuk SPLDV tak homogen dapat kita jumpai sebagai berikut
1).  2x + 3y = 5
2). 2x - y = 1

atau 
1).  3x - 2y = 4
2). 5x - 2y = 8


Penyelesaian/Solusi SPLDV

    Untuk menyelesaikan persamaan linear dua variabel, memiliki beberapa cara penyelesaian, untuk lebih lengkapnya dibaca, dipahami dan dinonton yah penjelasanya.

1. Menggunakan Metode Eliminasi

    Metode ini merupakan metode dimana nilai x dan y akan kita eliminasi satu persatu, untuk mendapatkan nilai dari x dan y tersebut. dapat dinyatakan sebagai berikut.

untuk langkah awal kita akan mencari nilai y dengan mengeliminasi x

2x + 3y = 13            dikali dengan 1

-x  + 2y = -3            dikali dengan 2